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Abstract
In this work, we develop pipelines to retrieve a
knowledge base article from the database based
on the query and answer the query using the re-
trieved passage. We optimize the pipeline for
performance, latency, and resource usage. The
availability of diverse knowledge bases makes this
task challenging. We propose novel methods to
handle FAQs, generate synthetic queries, model
fine-tuning, retrieve candidate sentences for an-
swer matching and improve runtime efficiency.

1. Our Pipeline Overview

Our final pipeline for the given task includes the following
parts (Figure 1):

1. Previously Answered Questions (Section 2)
• Fuzzy match with paraphrased questions

2. Sentence Retrieval (Section 3)
• Retrieval of Top K(dynamically chosen) sen-

tences to form the context for the question-
answering model.

3. Question Answering (Section 4)
• Question-Answering model inference on the re-

trieved context.

2. Previously Answered Questions:

Current Approach: In this method, we used the answers
to the available questions to respond the given query. To
implement this, we paraphrased the questions of the given
question-answer pairs using pre-trained T5-base paraphraser
model[1]. We first check the input query with the questions
in the paraphrased data using the FuzzyWuzzy[2] library
and return the answer if the query exists in the generated
paraphrased data otherwise, we forward this query to the
Question Answering pipeline. We reduced the runtime on
the CPU by converting this model to ONNX and then quan-
tizing it using the fastT5 library.

We can make further improvements by establishing a trade-
off between the amount of paraphrased data and the fuzzy
matching threshold.

Figure 1. Final Merged Pipeline

3. Paragraph Retrieval Task

3.1. Phrase v/s Passage Retrieval

Current Approach: Currently we are using Sentence-
based retrieval in our final pipeline. We follow the intuition
that a phrase/sentence based retrieval approach naturally en-
tails retrieving larger passages. This approach is particularly
appealing because the phrases/sentences can be used directly
to extract answers. This approach significantly improves the
retrieval accuracies and QA F1 scores.

Phrase based approaches don’t take into account answers
that span multiple sentences. Also, this approach can lead
to possible context loss (context that is provided by other
sentences around it), but context loss is also an issue for
passage based approaches in the form of mean pooling.

https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-Transfer-Transformer-
https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-Transfer-Transformer-
https://www.geeksforgeeks.org/fuzzywuzzy-python-library/
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Model Name Top 1 Top 3 Top 5 Top 10 Inference Time
cross-encoder/ms-marco-TinyBERT-L-2-v2 0.79 0.92 0.95 0.98 660 ms
msmarco-distilbert-base-tas-b 0.73 0.88 0.94 0.98 35 ms
msmarco-distilbert-dot-v5 0.70 0.86 0.90 0.96 44 ms
multi-qa-mpnet-base-dot-v1 0.77 0.92 0.95 0.99 71 ms

Table 1. Bi-Encoders v/s Cross-Encoders Performance

3.2. Bi-Encoders v/s Cross-Encoders:

State of the art Cross-Encoders achieve better performance
than Bi-Encoders. However, for most applications they are
not practical due to large runtimes and inefficiency. They
don’t produce reusable embeddings which could be effi-
ciently indexed and stored. Overall, our results indicate
that the cross-encoder performance boost is not signifi-
cant enough to compensate for the large inference time.
Hence, we decided to move forward with the embedding-
based approaches.

3.3. Synthetic Data Generation:

Question and answer generation is a data augmentation
method that aims to improve question-answering (QA)
models given the limited amount of human-labeled data.
This improves model robustness on diverse and challenging
datasets.

The following techniques are being used currently for syn-
thetic data generation :

3.3.1. Answer Aware Question Generation:

In answer-aware question generation, we use a language
model to generate a question based on the answer and its
corresponding passage context. A pre-trained T5-small
answer extraction model was used to retrieve entities from
the passage, and these entities, with the paragraphs, were
fed to a T5-base1 model. We customized the pipeline to
improve generation time and reduce RAM usage on the
device. We achieved runtime reduction using fastT5 library
and model quantization. We also observed huge spikes in
RAM usage while processing larger passages. To mitigate
this issue, we divided larger paragraphs into subparagraphs
with shorter context lengths. Hence, we used this method
for question answer generation.

3.3.2. NER Reranking:

While Generating Questions by Answer Aware QG tech-
nique, we faced the problems such as exceptionally high
resource usage when the number of sentences increased. To
filter the candidate sentences, we use a two-step approach
as follows

1The reference of the question generation pipeline is given here

Figure 2. Answer Aware QG Pipeline

• We passed the paragraph through a NER Model to
identify key entities like people, organizations etc.

• We calculate the importance of each entity using fre-
quency, centrality and specificity and then use a cus-
tom algorithm to re-rank the generated NER tags, thus
generating only the most specific questions from the
given theme.

In this method, we choose the best sentences instead of
passing a random sample or passing all the sentences.

The following techniques were explored previously for syn-
thetic data generation :

3.3.3. Rule-Based Question Answering:

The Stanford Parser, a Probabilistic Natural Language
Parser, was utilized to analyze the paragraphs of a text.

https://github.com/Ki6an/fastT5
https://github.com/patil-suraj/question_generation
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The process involved dividing the paragraphs into segments,
tokenizing them, and using NLTK, POS Tagger, and Parser
to identify the Parts-of-speech and chunked output of each
segment. The segments were then checked for clauses and
based on specific rules defined in a referenced paper, the
clauses were identified. Finally, other segments were ap-
pended to generate questions related to the original clause.
Although this method was efficient due to its use of rule-
based techniques, it was ultimately rejected because the
generated questions were biased toward certain templates.

3.3.4. Question-Answer Based Semantic Role Labelling
(QASRL)

The QASRL approach was employed to annotate question-
answer pairs in a given paragraph. The technique models
the verbal predicate-argument structure of the text using
question-answer pairs. The parser initially detects unlabeled
spans to determine the subject of a verb and then uses QG to
label the relationship between the predicate and the detected
spans. The model consisted of a pipeline in which verbal
predicates were identified using POS tags, and unlabeled
spans were detected to select a set of arguments for the verb.
These spans were then grouped by questions to form a set
of answers. However, this method was ultimately rejected
because it could not be optimized for the best performance
in Colab.

3.4. Training Methodology

Siamese networks are often used to extend sentence em-
beddings from English to other languages. We alter this
approach to train sentence transformer for retrieval. Classi-
cally, we pass the English sentence embedding to a teacher
model and train a student model to generate the same em-
bedding for a translated sentence via Mean Squared Error
(MSE) Loss. A secondary MSE Loss is calculated using En-
glish embeddings from the student model and teacher model,
to ensure the student model maintains it’s performance on
purely English tasks as well.

Current Approach: To adapt the technique for retrieval
task, we pass in the question to the teacher model which
we do not train. The paragraph which answers the ques-
tion is passed into the trainable student model, and MSE
loss is calculated on these two embeddings. The aim is to
train the student model to give similar embeddings for posi-
tive question and paragraph pairs, and maximize similarity
for retrieval. Note, that we do not use negative question
paragraph pairs for this task. We also use the same model
for teacher and student, as our purpose is to improve the
embeddings. We implement our technique on two sentence-
transformer models[6] and notice significant improvements
in retrieval.

3.5. Domain Adaption:

Domain Adaptation is a technique to improve the perfor-
mance of a model on a target domain containing insufficient
annotated data by using the knowledge learned by the model
from another related domain with adequate labelled data.

Retriever: We use dense retrievers for the retriever
task, which are known to degrade in performance across
unknown domains. We explored the novel unsupervised
technique, Generated Pseudo Labelling(GPL), to adapt the
retriever for the new domain. The technique involves three
steps: First, synthetic queries are generated for each passage
from the target corpus using synthetic question generation
techniques(reference section). Then, the generated queries
are used to mine negative passages with the use of dense
retrievers. Finally, the query-passage pairs are labelled
by a cross-encoder and used to train the domain-adapted
dense retriever. The method has shown state-of-the-art
performance on various QA datasets such as FiQA, SciFact,
BioASQ, and Robust04. However, we do not use this
technique as it requires time, and all the steps are resource
intensive, which cannot be met with the given constraints.

Figure 3. Overview of QC4QA method

Reader: Once deployed, QA systems often experience per-
formance deterioration on user-generated questions. Such
performance drops can be traced back to domain shifts in
two input elements: User-generated questions are syntacti-
cally more diverse and, thus, different from the training QA
pairs The context domain of test-time input (target domain)
can oftentimes diverge from the training corpora (source do-
main), e.g., from news snippets to biomedical articles. We
explored the Question Classification for Question Answer-
ing (QC4QA) technique for improving reader(QA model)
performance on QA tasks. QC4QA can be divided into
three stages: Starting with Question classification, where
all questions are assigned to different classes. Then Pseudo
labelling and sampling, where we label and sample target ex-
amples with the distribution-aware sampling strategy. And
finally, Self-supervised adaptation, in which we train the
QA system jointly with source and target data. This method
has shown state-of-the-art results with SQUAD as a source

https://ieeexplore.ieee.org/document/7732102
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Model Name Top 1 sentence Top 5 sentence Top 15 sentence Top 20 sentence
msmarco-distilbert-base-tas-b trained 0.679 0.884 0.934 0.946
msmarco-distilbert-base-tas-b 0.640 0.851 0.922 0.937
multi-qa-mpnet-base-dot-v1 trained 0.669 0.880 0.948 0.958
multi-qa-mpnet-base-dot-v1 0.617 0.849 0.932 0.946

Table 2. Siamese Trained Models vs Pre-Trained Models on Retrieval Accuracy

domain on various target domains such as triviaQA, CoQA,
NewsQA etc. However, we do not use this technique as it
requires time and resource-intensive self-supervised adapta-
tion, which cannot be met with the given constraints.

3.6. Fine-Tuning Methodology:

Experimental Setup: We fine-tune our bi-
encoders/embedding models that are pre-trained on
the MS MARCO dataset for the retrieval task using
Multiple Negatives Ranking Loss. For fine-tuning, we
use the synthetic data that we have generated along with
the provided question-answer pairs. We fine-tuned across
three levels of specificity: global, cluster, and local. Across
all settings, we fine-tuned for 1 epoch with batch size 8,
warm-up steps equivalent to 10% of the generated data. To
use MNR loss, a custom dataloader was implemented to
that there are no duplicate sentences within the same batch.

Global fine-tuning involved using the entire generated data,
while cluster-based fine-tuning used only a subset of data
(based on clustering of themes) and single theme fine-tuning
created models for each theme by fine-tuning on each theme
separately. The clustering of themes was done by creating
Phrase-Bert-based embeddings for the theme names and
then applying a clustering algorithm like KMeans, Affinity
Propagation etc. The intuition behind clustering based on
theme names is that themes with similar knowledge would
be in the same cluster.

Why MNR Loss? Multiple Negative Ranking (MNR)
Loss is a suitable loss function because we have only pos-
itive query, passage pairs. When we use MNR loss, we
provide triplets: (query, positive passage, negative passage)
where positive passage is the relevant passage to the query
and negative passage is a non-relevant passage to the query.
We compute the embeddings for all queries, positive pas-
sages, and negative passages in the corpus and then optimize
the following objective: We want to have the (query, pos-
itive passage) pair to be close in the vector space while
(query, negative passage) should be distant in vector space.
We don’t actually provide the negative passages, they are
generated in batch. For each positive pair of (query, passage)
that can be represented as (qi, pi), we form negatives in the
form of (qi, pj) where i! = j.

An alternative to MNR loss is MarginMSE loss. An advan-

tage of MarginMSELoss compared to MNR loss is that we
do not require a positive and negative passage. In contrast
to MNR loss which uses the (query, passage1, passage2)
triplets, passage1 and passage2 do not have to be strictly
positive/negative, both can be relevant or not relevant for a
given query. We then compute the Cross-Encoder score for
(query, passage1) and (query, passage2). We then compute
the distance:

CE distance = CEScore(query, passage1)−
CEScore(query, passage2).

For our bi-encoder training, we encode query, passage1,
and passage2 into vector spaces and then measure the dot-
product between (query, passage1) and (query, passage2).
Again, we measure the distance:

BE distance = DotScore(query, passage1)−
DotScore(query, passage2).

We then want to ensure that the distance predicted by the
bi-encoder is close to the distance predicted by the cross-
encoder, i.e., we optimize the mean-squared error (MSE)
between CE distance and BE distance.

A major disadvantage of MarginMSELoss is the slower
training time. In MNR Loss, with a batch size of 32, we
compare one query against 64 (32+32) passages while with
MarginMSE Loss, we compare a query only against two
passages which leads to slower convergence. Also the usage
of cross-encoders further slows down the whole process.

Results: Fine tuning improves retrieval accuracy on direct
passage retrieval task along with greater improvement on
both retrieval and QA task in final pipeline. Results are
referred in Table 3.

Fine Tuning type Top1 Top5 Top10
Vanilla 0.64 0.87 0.93
Global 0.72 0.90 0.95
Local 0.69 0.93 0.96
Clusters 0.71 0.92 0.95

Table 3. Retrieval Accuracies for different fine tuning methods
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3.7. Run Time Improvements:

Stored embeddings: We store the embeddings of the para-
graphs in memory to save time on repeated calls to the
model.
Dynamic sentence count: Dynamically choose a number of
sentences based on a token threshold in the Reader-Guided
Passage Reranking technique to make the inference time
dataset independent and maximize score within constraints.

Figure 4. Token Length v/s Time

Quantization and Optimisation:We quantized and opti-
mised(onnx) the sentence embedding models. However,
the advantage in speed did not outweigh the loss in scores.
Hence, we choose not to use this method.

4. QA Task

4.1. Synthetic Data Generation:

Details about this task can be found in Section 3.3.1

4.2. Training Methodology:

The given training data was a subset of the SQuAD 2.0
training data. Models trained on complete SQuAD 2.0 train-
ing data are available on Huggingface which perform well
on the SQuAD 2.0 validation dataset. However, there are
more QA datasets available (Trivia-QA, News-QA, Natural
Questions, HotPot-QA) that have different distributions of
questions and paragraph types due to which the SQuAD 2.0
models perform poorly on the same. In order to include
information of another dataset (other than SQuAD 2.0) in
our model we tried Model Distillation. The teacher model
used for distillation was trained on a Natural Questions
(deepset/roberta-base-squad2-nq), and the student model
picked was trained on SQuAD 2.0 (deepset/tinyroberta-
squad2). Due to the dataset constraints, using the given

data for distillation caused the model to overfit on SQuAD
2.0. We didn’t go ahead with this approach due to the
above reasons.

Dataset F1 F1-distilled
SQuAD 2.0 Valid 82 80
Trivia QA 43 44

Table 4. F1 score before and after distilling tinyroberta

Possible Solution: If we could use any dataset other than
SQuAD 2.0 to distill the model using a teacher model, then
it can help make the model more robust.

4.3. Fine-Tuning Methodology:

Experimental Setup: For fine-tuning questions and answer-
ing tasks, we used theme-wise and cluster-wise fine-tuning.
We use the squad2 validation set for all our tests. We split
the dataset theme/cluster-wise into train test pairs(30/70).
On each theme/cluster, we fine-tune the combined dataset
of the train(30%) and the generated questions (explained in
3.3.1) and test(70%) data. We use Phrase-Bert encoder to
generate embeddings for theme titles and cluster them using
KMeans Clustering.

Figure 5. KMeans Clusters on theme embeddings

We notice that the themes with similar semantic information
are clustered together (Fig 5). For example, the sky blue
cluster in the lower-left part of the figure consists of all
football clubs in the dataset, and the dark blue in the lower-
center part of the figure consists of all US cities.

Results: We find that in both cluster and theme-based fine-
tuned models, the F1 and Exact Match scores increase com-
pared to the original pre-trained model on the test set. We
also find that the variance of scores across themes reduces
significantly. Thus, we preferred this idea for theme/cluster-
based fine-tuned models. The cluster-based fine-tuning per-
forms better than theme-based fine-tuning because the avail-
ability of data is more for a cluster than a theme.
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Name F1-mean F1-van-mean
Cluster-Wise fine-tuning 87.2 86.8
Theme-Wise fine-tuning 86.8 86.4

Table 5. mean of F1 in model using fine-tuning and vanilla, where
the number of clusters is 10

Name F1-var F1-van-var
Cluster-Wise fine-tuning 6.9 8.6
Theme-Wise fine-tuning 31.1 34.3

Table 6. variance of F1 in the model using fine-tuning and vanilla,
where the number of clusters is 10

However, the above finetuning recipe on the generated QA
pairs on the training dataset did not improve our scores.
This shows that fine-tuning the generated QA pairs on the
pre-trained paragraphs leads to overfitting and should be
avoided. Further on, in the given test set, most of the QA
pairs were also part of the squad2 train dataset on which
the model was pre-trained. Hence, we decided against fine-
tuning models on any theme or cluster.

4.4. Run Time Improvements

In order to improve inference time on the CPU of the Ques-
tion Answering Model, we have tried the following ap-
proaches:

ONNX Representation and Model Quantization:
ONNX[3] is an open format built to represent machine learn-
ing models. ONNX defines a common set of operators -
the building blocks of machine learning and deep learning
models - and a common file format to enable AI developers
to use models with a variety of frameworks, tools, runtimes,
and compilers We had the following latency results2 using
ONNX representation :

Deberta-V3-Base Model Latency (per query)
ONNX Base 725.75ms
ONNX Optimized 669.62ms
ONNX Optimized+Quantized 445.97ms

Table 7. ONNX Model Inference Times on Google Colab

The Quantized here refers to INT8 quantization of model
weights (dynamic quantization). We can see that the la-
tency is minimum for the quantized model. However, the re-
sults produced by the quantized model were not satisfactory.
The results for the quantized Deberta model were not accu-
rate due to partial/improper quantization (not supported fully
yet). The solution for this is using Quantization Aware

2all latency results were tested on AMD EPYC 7B12 CPU
Session. The latency was tested by averaging the model inference
time on 20 random inputs (240 sequence length) in a for loop

Training (introduces fake quantization of inputs) during the
fine-tuning of the models for a downstream task so that the
models can learn to improve accuracy in INT8 precision.
However, as we had dataset and training time constraints
implementing this was not feasible.

Finally, we decided to go forward only with the Opti-
mized ONNX model for the final pipeline. In order to
get inference times further under the constraints, we limited
the total number of tokens returned by the retrieval model,
which caused a major boost in inference time with minimal
effect on the F1 score(reference to retrieval section).

The F1 scores and latency details on SQuAD 2.0 validation
dataset are in Table 8.

Model F1 Latency (per query)
ONNX Optimized 85.48 669.62ms
PyTorch Vanilla 87.06 1112.73ms

Table 8. deepset/deberta-v3-base trained on SQuAD 2.0

ONNX models score a bit less compared to the vanilla
PyTorch model. While ONNX models may score slightly
lower than their PyTorch counterparts, the trade-off in terms
of deployment flexibility, collaboration, and performance
makes it a compelling option for many use cases.

Runtime Environment Challenges: Google Colab pro-
vides 2 runtimes in its free tier version; one with an AMD
EPYC 7B12 CPU and the other with an Intel(R) Xeon(R)
CPU @ 2.20GHz. The inference times were as follows:

We can see a clear performance difference between Intel
and AMD CPUs provided by Google Colab.

Possible solutions include using Intel-specific optimizations
for inferencing ONNX models faster on Intel, like using In-
tel Integrated Graphics of the CPU and using FP16 or BF16
model formats for inference. However, none of the above
methods is supported on an Intel CPU session available in
free tier Google Colab.

Rust Implementation of Transformers: Rust is a lower-
level language compared to Python, which makes it very
fast. Like python, it also has libraries in the form of crates,
and rust-bert[4] is one such crate that implements almost all
the transformer models in Rust for inference.

One of the major advantages of using Rust is faster inference
times and efficient memory usage without compromising
on model accuracy. Rust models are highly optimized for
Rust-based runtimes and require heavy installations and
compilations to function effectively in a python based en-
vironment. This did not allow us to use the Rust models
for submission. For industrial applications, where a custom
environment is used, we propose to use Rust models for fast
runtimes and optimized usage.

https://github.com/microsoft/onnxruntime
https://github.com/guillaume-be/rust-bert
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Model Pruning: Pruning is a systematic way of remov-
ing redundant weights and connections within a neural
network. An applied pruning algorithm must determine
which weights are redundant and will not affect the accuracy,
which basically involves sparsifying the model weights to in-
crease inference speed. For the same, we used SparseML[4],
which is an open-source library that simplifies the process
of applying sparsity algorithms. However, one of the major
drawbacks of the above method is that it requires train-
ing the model from scratch with sparsification algorithms
applied for the required downstream task. The training re-
quires around 30-35 epochs which was not a feasible option
according to the given constraints.

We also tried layer-drop pruning, wherein we remove a num-
ber of top encoding layers from a trained model, and re-train
with layer-wise learning rate decay (LLRD). Essentially, the
new top layer is assigned the highest rate, and this decays
as we go down the layers. We show results for a 10-layer
roberta-base model (original model has 12 layers) trained on
SQuAD 2.0, which we re-trained for 1 epoch on the given
training set. Recovering original performance needs more
epochs which is not feasible given the constraints, and also
runs the risk of over-fitting. The F1 scores for Table 9 are
on SQuAD 2.0 validation set.

Model F1
deepset/roberta-base-squad2 pruned 82.07
deepset/roberta-base-squad2 82.91

Table 9. Effect of layer-drop pruning + LLRD

5. Reader-Guided Passage Reranking:

The given passage corpus for the theme is converted into a
sentence corpus using the NLTK sentence tokenizer.
The top k(parameter) closest sentences in the corpus to the
query are retrieved using the Sentence Embedding models
by cosine measure . These sentences are then concatenated
and passed to the QA model as a single context.
If the QA model returns an answer, we retrieve the sentence
which returned the answer. The sentence is then used to re-
trieve the actual paragraph it belonged to, hence completing
the retrieval.
If the QA model does not return an answer, we say that
the question is unanswerable and return -1 for the retrieved
passage.
Since the QA model performs inference on the top k sen-
tences, the inference time is directly proportional to the
sentence length. This is a parameter we cannot control, we
add an additional threshold on the number of tokens passed
to the QA model. Hence, making our model’s runtime
dataset independent.

6. Final Implemented Merged Pipeline:

In a realistic setting, the given data would be unseen
for both the Retrieval(Biencoders/Sentence Embedding)
Models and Question Answering Models. Our approach is:
We fine-tune the Retrieval model theme-wise on a corpus
comprising of any sample QA pairs present on the given
theme and Generated QA on the paragraphs of that theme
using MNR loss .
We fine-tune the QA model theme-wise on a corpus
comprising of any sample QA pairs present on the given
theme and Generated QA on the paragraphs of that theme.
We first check for FAQs and then follow it with the Reader
Guided passage reranking technique using an optimised
version of the Deberta model.

However, this was not the case for most of the test
samples provided. We modified our approach to suit the
data better. We did not fine-tune the QA model and only
used an optimised version of the vanilla deepset Deberta
model.

7. Result and Run-time Analysis

We get the following results on the Final Implemented
Merged Pipeline:

Model Name Retrieval QA
van Ret + van QA 89.9 82.1
tuned Ret + van QA 90.3 83.02
van Ret + tuned QA 90.1 82.5
tuned Ret + tuned QA 91.45 83.77

Table 10. Pipeline Scores

– van Ret - Vanilla ”all-mpnet-base-v2”

– tuned Ret - van Ret fine tuned locally

– van QA - Vanilla ”deepset/deberta-v3-base-squad2”

– tuned QA - van QA fine tuned locally

Model Name Retrieval QA Inf Time
van Ret, QA top 10 89.9 82.1 1.02
van Ret, QA top 5 87.91 80.03 605

Table 11. Time v/s Score tradeoff with no. of sentences

8. Literature Survey

Retrieval: Open Domain Question Answering (ODOA) has
been studied widely recently, and a classic framework of
ODQA system is implemented by encompassing an infor-
mation retriever (IR) and a reader, i.e., Retriever-Reader.
The task of IR is to retrieve evidence-related text pieces

https://neuralmagic.com/sparseml/
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from the large knowledge corpus. Popularly used I can
be TF-IDF, BM25 and DR (dense passage retriever), etc.
The target of the reader is understanding and reasoning
the retrieved evidence to yield the answer. It is often
achieved by transformer-based language models, such as
BERT, RoBERTa, ALBERT or sequence-to-sequence gen-
erator T5, BART, GPT, etc. There is a very recent approach
where we are stacking the retriever layer, reranking layer
and reading layer into a single model name YONO which
aims at reducing the model size.
There are different types of frameworks along which the
question-answering models have been developed, namely:

• Retriever and Reader

• Retriever-only

• Generator-only

Most recent works follow Retriever and Reader framework
and further supersede the TF-IDF or CNN based retriever
with stronger transformer-based models, such as BERT, T5,
BART, etc. The readers can be classified into generative
and extractive readers. Dense Passage Retriever directly
leverages pre-trained BERT models to build a dual-encoder
retriever without additional pre-training. Dual-encoder re-
trievers like DR, encode the questions and documents in-
dependently, ignoring interaction between questions and
documents, and limiting their retrieval performance. To rem-
edy this issue, Colbert adds interaction between different
embeddings on the top of a dual-encoder, and Colbert@A
applies it into ODQA domain to gain better performance.
Retriever-only systems tackle ODOA tasks with a single
retriever, eliminating reading or generating step. Generator-
only ODQA models are normally based on single generators,
mainly seq2seq generative language models, like T5, GPT
and BART. However, most general -purpose ODQA models
are computationally intensive, inference slowly, and training
expensive. One reason is the huge index/document size (see
Table 2). Concretely, a corpus typically contains millions of
long-form articles that need to be encoded and indexed for
evidence retrieval. As we want our model to deliver answers
quickly by using limited resources, all these resource-heavy
and slow inference methods are not appropriate for our
tasks.

Question Answering Early approaches to Question An-
swering involved rule-based systems, relying on predefined
rules and patterns to extract answers from the text. These
systems had limited capability to handle complex and am-
biguous questions. They were not robust to out-of-domain
tasks and languages. With the advent of Machine learning,
large text datasets were used to train language models with a
self-supervised training mechanism, leading to considerable
improvements in answer extraction and generation. These
methods relied on information retrieval (IR) techniques that
involved ranking and retrieving the most relevant documents

or passages from a given dataset. Recently, Large deep-
learning models have offered significant accuracy gains, but
training these large language models is challenging. These
models are not usable in real-time applications due to re-
source and device constraints. Currently, many pre-trained
models are available on Hugging Face (RoBERTa, BERT,
Deberta-v3, XLM Net, etc.) for extractive Question An-
swering. Given the resource constraints in the problem
statement, these models are rendered unusable for this task.
We research possible methods to optimize the available
models on CPU are: • Quantization • Pruning • Distillation
• Model Architecture Most works on model compression
focus on ”distilling” a pre-trained model through expen-
sive finetuning, while some reduce model complexity by
structured pruning of model parameters. Structured Pruning
of BERT-based Question Answering Models uses a hybrid
combination of task-specific structured pruning and distilla-
tion and shows significant gains in speed and performance.
Zero Redundancy Optimizer (ZeRO) optimizes language
model memory requirements, enabling lower latency.
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